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distribution of ~o., is 

P(rk/R) = [2"rrlo(XR2)] -~ exp [XR 2 cos (25 + ~:)], (A4) 

where s c is defined in (2)-(5) and X in (15). Clearly, 
(A4) has a unique maximum at 2~pa, = -- S c when XR 2 
is large. 
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Abstract 

A simple method of describing the scattering from an 
atom continuously distributed in the unit cell is 
proposed. Some experimental applications in struc- 
tural investigations are presented. 

I. Introduction 

It is not unusual in structural analysis that an atom 
does not occupy a definite point position in the unit 
cell but is distributed among a number of positions, 
discretely or continuously. The problems connected 
with atomic disorder in crystals have been discussed 
extensively for a long time (Krivoglaz, 1969; Dunitz, 
Schomaker & Trueblood, 1988; Kuhs, 1992). If the 
number of occupied positions is finite, it is possible 
to refine these positions with partial populations. For 
more complicated distributions, caused by statistical 
displacements or thermal vibrations, a general 
approach has been introduced by Johnson (1969). It 
is based on a differential expansion of the atomic 
Gaussian probability density function (p.d.f.), which 
after Fourier transformation leads to a series expan- 

© 1994 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

sion of tensorial coefficients. The limitations of this 
approach were discussed by Kuhs (1992). However, 
there are many cases when one wishes to express the 
p.d.f, for disordered atoms in real space. This p.d.f. 
will not only be similar to the Guassian or Johnson 
expansions but, also, its type may be established on 
the basis of physical considerations. Sometimes, it is 
possible to parametrize such a p.d.f, with a small 
number of parameters and use these as variables in 
the refinement. This direct approach to define the 
p.d.f, of disordered atoms was applied in the struc- 
tural investigations of two compounds. Preliminary 
results were published in brief (Zhukov, 1991; 
Chernyshev, 1992). In this paper, a more detailed 
description is presented. 

2. An atom uniformly distributed on a sphere 

Let us define the average unit cell (a.u.c.) as that 
obtained by averaging the crystal unit cells. Such 
a.u.c.'s are used in ordinary structure-factor calcula- 
tions. Let atom A in the a.u.c, be continuously 
distributed with equal probability on some set of 
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positions on a sphere of radius R. Assuming scat- 
tering from a crystal with a.u.c.'s to be the same as 
that from a real crystal, one may calculate the scat- 
tering from atom A as follows. 

It is possible to represent the sphere as a sum of n 
sets with equal areas. Let atom A be situated in set j 
with probability 1/n, radius vector rj, form factor 
fa(H) and isotropic temperature factor ta(H, Uiso). 
The structure-factor contribution from such a dis- 
ordered atom is 

(l/n) ~ fa(H)tA(H, Uiso ) exp (2zriH" r j) 
j = l  

= fx(H)tA(H, Uiso) 

x[(1/4~rR2)~exp(27riH'rj)(4~rR2/n)] " j = l  (1) 

When n-* oo, the area of a sphere surface element 
4rrRU/n tends to R 2 sin 0d0d~p and the expression in 
square brackets is equal to 

2~-  r r  

(1/4zr) f dq~J" exp (2TriHR cos 0) sin 0d0 = sinp/p, (2) 
0 0 

where p = 2~rHR = 47rR sin 0/A. 
So, in the case of isotropic thermal vibrations, the 

continuous distribution of atomic statistical positions 
for the atom may be simply accounted for by multi- 
plying the atomic form factor f (H) by some function 
S01,x). The vector x defines the parameters of the 
get of atomic position distributions. For a sphere of 
radius R, we have 

Sol,x) = S(H,R) = sin 2~HR/2rrHR, (3) 

where the parameter x is simply R. Expression (3) 
[and expression (4) in §3] has been known in crystal- 
lography for a long time (Bijvoet & Ketelaar, 1932; 
Verweel & Bijvoet, 1938; King & Lipscomb, 1950; 
Bennett, Hutcheon & Foxman, 1975). The present 
method of calculation of S(H,x) is general and 
simple as it reduces to an integration of the function 
exp (2 t r i l l ' r )  over sets of continuous atomic posi- 
tion distributions of arbitrary form. 

2"rg 

= (1/270 f exp (21riHR cos ~ sin $)d~o 
0 

= J0(2zrHR sin ~). (4) 

J0 is the zero-order Bessel function and ~ is the angle 
between H and the ring-plane normal. For the calcu- 
lation of (4), Hansen's integral (Watson, 1952) and a 
spherical coordinate system were used with H = 
H(sin 0,0,cos if) and r = r(cos ~,sin ~,0). In this 
case, the vector x consists of four parameters, the 
radius R and the direction cosines of the unit vector 
normal to the plane of the ring. 

For a line segment with length 2a, 

S(H,x) = (1/2a) f exp (2"rriHrcos $)dr = sinp/p. (5) 
- - a  

p = 2~rHa cos ~ and ~ is the angle between H and 
the line. 

4. Insertion in the least-squares refinement programs 

Since we have S(h,x) in analytical form, we may 
insert it into refinement programs for powder or 
single-crystal diffraction data and get quantitative 
values of the parameters x. For this, one needs only 
to multiply the atomic form factor by the function 
S(H,x) and then calculate the moduli of the struc- 
tural amplitudes and their derivatives. It should be 
noted that for a statistically distributed atom A the 
radius vector ra represents the coordinates with 
respect to the centre of the set, for example, the 
centre of the sphere. However, the positional deriva- 
tives are not affected. Some additional derivatives of 
the parameters x must be added. These corrections 
were introduced into the single-crystal AE1 
(Chernyshev et al., 1992) and the powder MRIA 
(Zlokazov & Chernyshev, 1992) refinement pro- 
grams. The refinement results for some experimental 
single-crystal X-ray data are presented in §5. 

3. An atom uniformly distributed on a ring and a line 
segment 

With the procedure described above, it is not difficult 
to obtain the expression for S(H,x) if the atom is 
statistically distributed on a ring or on a line seg- 
ment. For a ring of radius R, 

S(H,x) = lim(1/n) ~. exp (2rriH'rj) 
n--, oo j =  1 

= (1/2rrR)lim ~ exp(2rriH'rj)(2rrR/n) 
n ~ o o j =  1 

5. Examples of use in structural investigations 

5.1. Pb atom distributed on a sphere 

We start from the results of the refinements for 
lead magnesoniobate (PMN), Pb(Mgl/3Nb2/3)O3 
(Zhukov, 1991), space group Pm3m. A spherical 
crystal of diameter 0.30 (1) mm was used for the data 
collection on a CAD-4 diffractometer at two tem- 
peratures, 293 and 573 K (Mo Ka radiation). Since 
PMN has a very high linear absorption coefficient of 
66.8 mm -~, the spherical absorption correction for 
/.,R = 10, from Table 5.3.6B of International Tables 
for X-ray Crystallography (1959) was applied to aver- 
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Table 1. Structure data of lead magnesoniobate, 
P b ( M g l / 3 N b 2 / 3 ) O 3  

In refinement Ui~o(Nb) = Ui~o(Mg) is assumed. 

a (A) 
Number if unique reflections 
(sin O/A)m~ (A-')  

A t o m  Posit ion 

Pb O, O, 0 

,~, ~, ~ 
U g  ~,,~, 
O ~,~,0 

T = 293 K 
4.0401 (8) 
79 
0.99 

Occupancy  

1 
2 

1 

T = 573 K 
4.044 (1) 
63 
0.90 

aged intensities.* Atomic scattering factors for the 
neutral atoms were taken from International Tables 
for X-ray Crystallography (1974). Some structural 
information concerning P M N  is given in Table 1. 

Initially, two models for the thermal vibrations of 
lead were refined: model A - harmonic (isotropic) 
thermal vibration for lead; and model B -  anhar- 
monic thermal vibration. Gram-Charl ier  series 
expansion up to the fourth order was used in model 
B [International Tables for X-ray Crystallography 
(1974), p. 316; see also Appendix 1 of the present 
paper]. The isotropic primary-extinction parameter 
(Becker & Coppens, 1974) was also refined. The 
minimization was on F 2. Although the F refinement 
has the same global minimum as F 2 refinement, the 
minimization process on F for model A converges to 
different local minima depending on the initial values 
of the variables. The refinement results are displayed 
in Table 2. One can see from Table 2 that model .4 is 
unsuitable for the two experimental data sets. Model 
B gives satisfactory results at 573 K and is not so 
good at 293 K. The fact that the absolute values of 
the anharmonic parameters of the Pb atom at 293 K 
are much higher than those at 573 K indicates strong 
disorder of lead at room temperature. All attempts 
to find suitable split positions for it failed. On the 
basis of the discussion in Appendix 2, model C - in 
which lead is uniformly distributed on a sphere of 
radius Rpb - was proposed for the refinement. Model 
C gives the most satisfactory result for the experi- 
mental set at 293 K. 

After refinements B and C, the p.d.f.'s of lead were 
calculated (see Appendix 1) at two different tempera- 
tures. The plots of these p.d.f.'s along the [100] 
direction are displayed in Fig. 1. It is necessary to 
mention that these p.d.f.'s at 573 K are qualitatively 
different but the R factors for different models are 
close. Probably, a model that takes into account the 
disordering and the anharmonic thermal motion of 

* Lists o f  Fobs (after averaging and absorpt ion  correction) and 
refinement results at T = 293 and 573 K have been deposited with 
the I U C r  (Reference: AL573).  Copies may  be obta ined through 
The Managing Editor,  International  Union  of  Crystal lography,  
5 Abbey  Square, Chester  C H  1 2HU,  England. 

Table 2. Results of the refinements of lead 
magnesoniobate at two temperatures 

First  line T = 293 K, second line T = 573 K. 

Model  A - harmonic  (isotropic) thermal vibrat ions for the Pb  
atom. Mode l  B -  anharmonic  thermal vibrat ions for the Pb  a tom.  
Model  C - Pb  a tom uniformly distr ibuted on a sphere, r = radius 
of  an ideal mosaic  block. Minimization Y w21F~o~ - F~. , [2~mini -  
mum,  Fki. = Scale x y l / 2 F e a t c  , y = extinction coefficient, w2 = 

- 2  2 o" (Fobs), 

R = ZIFobs- F~,l/YlFob, I, 
Rw = [wlFo~ - F~.12/ZwF~obj ''2, 

GOF = [Y~wlVob~ - rk,.12/Z(n -p)],/2, 
w = o'-2Fobs, n = number of reflections, p = number of variables. 

A B C 

Scale 4.8 (4) 3.27 (l 1) 2.95 (7) 
3.2 (2) 2.56 (5) 2.73 (9) 

Lead 

Ui~o (A 2) 0.079 (4) 0.045 (1) 0.020 (1) 
0.063 (3) 0.044 (1) 0.033 (2) 

d . .  x 107 -93  (5) 
- 6 5  ( 4 )  

d1122 x 107 - 3 6  (3) 
- 2 7  ( 2 )  

Rpb (A) 0.286 (2) 
0.244 (5) 

(Niobium, magnesium) 

U~, (A 2) 0.019 (3) 0.0101 (8) 0.0110 (5) 
0.018 (1) 0.0114 (5) 0.0143 (8) 

Oxygen 

U~,o (A 2) 0.037 (6) 0.023 (3) 0.022 (1) 
0.032 (4) 0.028 (1) 0.033 (6) 

r (l~m) 9 (1) 5.6 (5) 3.0 (3) 
3.7 (5) 2.0 (2) 2.3 (4) 

Variables 5 7 6 

R 0.127 0.060 0.037 
0.070 0.030 0.045 

Rw 0.213 0.091 0.052 
0.094 0.037 0.055 

GOF 3.53 1.58 1.10 
1.36 0.59 0.95 

the Pb atom should be used. Certainly, by increasing 
the number of terms of the Gram-Charl ier  represen- 
tation of the temperature factor of the Pb atom, one 
may obtain more acceptable results for the 
refinement of model B at room temperature. How- 
ever, in that case the number of variables also 
increases. The direct approach of the representation 
of the p.d.f, for the Pb atom in PMN at room 
temperature achieves the required goal. 

At 573 K, the atomic thermal vibrations in P M N  
give a more important contribution to the scattered 
intensities and it is not surprising that taking into 
account the anharmonic thermal vibrations of the Pb 
atom gives the best results in this case. 

5.2. H atoms in fully disordered methyl groups 

Expression (4) was successfully used in the 
structure refinement of (a-hydroxy-a-phenyl- 
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acetato)trimethyltin (Sizova et al., 1993). Crystal 
data: CI1H1603Sn, monoclinic, space group P2Jc, 
a = 7.887 (2), b = 22.002 (4), c = 15.592 (3) A, 
fl = 100.11 (2) °, Z = 8 (two independent molecules in 
the asymmetric unit). Of the total of 7731 reflections 
recorded on a CAD-4 diffractometer (Mo Ka radia- 
tion, Omax = 30 °) at room temperature, only 4861 
with I >  2.5tr(/) were used in the refinement after 
empirical absorption correction. As was seen from a 
difference electron-density map, all methyl groups 
attached to the Sn atom were rotationally disordered 
and for the H atoms of these groups the following 
procedure was used. The methyl H atoms were 
assumed to be uniformly distributed on a ring and 
the parameters refined were the radius, the coordi- 
nates of the centre of the ring and the isotropic 
displacement parameter. The total occupation of the 
H atoms was equal to 3. The values obtained for the 
radii of the rings varied from 0.85 (2) to 0.90 (2)A, 
which gave the values 0.98-1.05 A for C-H distances 
in the methyl groups. The total number of refined 
parameters was 356 and the final error indices 
obtained were R = 0.034, Rw = 0.035, goodness of fit 
(GOF) = 1.5. It should be noted that the model used 
for the methyl H atoms decreases the number of 
refined parameters per methyl group from 12 to 5. 

6. Concluding remarks 

The approach presented for accounting for atomic 
disorder may be very useful in structural investiga- 
tions as shown above. It is easy to obtain a set of 
analytical functions S(H,x) for various types of dis- 
ordering with regular geometric shape. Further, these 
functions may be inserted in refinement programs for 
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Fig. 1. P.d.f.'s of  the Pb atom in direction [100]. B1, B2 - model B 
at 293 and 573 K. C1, C2 - model C at 293 and 573 K. Model B 
- anharmonic thermal vibrations of  the Pb atom; model C - Pb 
atom uniformly distributed on the sphere. 

powder and single-crystal diffraction data, which can 
lead to considerable improvement in the fitting. A 
physical picture of the crystal interior can be 
obtained, coupled with quantitative values of the 
parameters x. 
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APPENDIX 1 
Probability density functions for different models of 

the Pb atom 

The harmonic temperature factor for lead (site sym- 
metry m3m) has the form Them = exp [ - f l l l ( h  2 + k 2 
+ 12)]. Then, PAX.harm will be [see International 
Tables for X-ray Crystallography (1974), p. 314]: 

p.d.f.ha~n(U) = p.d.f.harm(U) 

= (7/ ' /311) 3 / 2 e x p [ - ( 3 ~ 2 / f l l l ) u 2 ] ,  (A1) 

where u is the displacement vector of the Pb atom 
from the position (0,0,0). 

If the temperature factor of lead is refined in a 
Gram-Charlier representation up to fourth order 
[International Tables for X-ray Crystallography 
(1974), p. 317], then 

Tanharm -" Tharm{1 + [ ( 2 ~ i ) 4 / 4 ! ] [ d l l l l ( h  4 -I- k 4 + / 4) 

+ 4dl122(h2k 2 + h212 + k212)]} (.42) 

and P.d.f-anhann will be 

P-d.f.anham,(U) = p.d.f.ha,-~(U){1 + (1/4!) 

X [d, lll(Hllll(U) + n2222(u) 

+ H3333(u)) + 4dl122(Hl122(u) 

+ Hl133(u)+ H2233(u))]}. (A3) 

Hok; are Hermite polynomials as defined in Interna- 
tional Tables for X-ray Crystallography (1974, p. 
316). 

If lead is distributed on a sphere with radius R, for 
the P.d.f-sphere calculation one can use the concept of 
the joint p.d.f. (Bachman & Schulz, 1984). Then, 
writing (A1) as p.d.f.h~rm(U)=aexp(-bu2), one 
obtains 

P.d-f.sphere(U) = P-d.f.sphere(U) 
2~r ~r 

= (1/4~') f d ~ f d O  sin Oa 
0 0 

x exp [ - b(R 2 + u 2 - 2Ru cos 0)] 

= p.d.f.h~,,(u)(1/4bgu) exp ( -  bR 2) 

x [exp (2bRu) - exp ( -  2bRu)]. (A4) 



CHERNYSHEV, ZHUKOV, YATSENKO, ASLANOV AND SCHENK 605 

APPENDIX 2 
Crystal-chemical model of Pb atom distributed on the 

sphere surface 

The distance between the Pb position (0,0,0) and 
the O atoms in the structure of lead magneso- 
niobate, 2.857 A, seems to be rather long in compari- 
son with the average Pb-O distance (about 2.814 A) 
in crystal structures containing 12-coordinated 
Pb atoms. However, the difference is not so 
dramatic as to cause strong disorder of the Pb 
atom, because in the structures of Rb2PbCu(NO2)6 
(Takagi, Joesten & Lenhert, 1976) and 
Cs2PbCu(NO2)6 (Klein & Reinen, 1978) these dis- 
tances are 2.843 and 2.847 A, where the Pb atoms 
occupy fixed positions. 

The fact of strong disorder of the Pb atom in 
PMN can be explained in terms of a bond-valence 
model. Let us assume that the Mg and Nb atoms are 
isomorphously distributed in the crystal lattice. 
Then, different kinds of O atoms exist: O atoms 
connected to two Nb atoms, to two Mg atoms and to 
one Nb and one Mg atom. If the second and third 
coordination spheres are taken into account, the 
number of different kinds may be increased. So the 
bond order of Pb-O will range from 1/12 to 1/3 of a 
valence unit depending on the local surroundings. 
The vector sum of the Pb-O interactions will differ 
from zero and will have a random direction, causing 
the shift of the Pb atom from the centre of the 
polyhedron. 
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Abstract 

An exact Fourier representation of the probability 
for the Y~I relationship is derived, which takes into 
account the presence of noncrystallographic centro- 
symmetry in the asymmetic unit of the space group 
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P1. Illustrative examples show that'the main effect of 
noncrystallographic symmetry is to decrease the 
probability that E2h is positive, as compared to the 
corresponding probability in the absence of such 
symmetry. The effect appears to be more pro- 
nounced in the equal-atom case than it is for a 
structure having a heterogeneous atomic com- 
position. 
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